

辽宁省 2022 年普通高等学校招生选择性考试 化学

本试卷满分100分, 考试时间75分钟。

可能用到的相对原子质量: H-1 B-11 C-12 N-14 O-16 Na-23 S-32

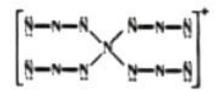
- 一、选择题: 本题共 15 小题, 每小题 3 分, 共 45 分。在每小题给出的四个选项 中, 只有一项符合题目要求。
- 1. 北京冬奥会备受世界瞩目。下列说法错误的是()
- A. 冰壶主材料花岗岩属于无机非金属材料
- B. 火炬"飞扬"使用的碳纤维属于有机高分子材料
- C. 冬奥会"同心"金属奖牌属于合金材料
- D. 短道速滑服使用的超高分子量聚乙烯属于有机高分子材料
- 2. 下列符号表征或说法正确的是()
- C. CO_3^{2-} 空间结构: 平面三角形 D. KOH 电子式: K:O:H
- 3. 设 N_A 为阿伏加德罗常数的值。下列说法正确的是 ()
- A. 1.8g ¹⁸O 中含有的中子数为 N_A
- B. 28g C₂H₄ 分子中含有的 σ 键

数目为4N₄

- C. 标准状况下, 22.4L HCl 气体中 H^+ 数目为 N_A D. pH = 12 的 Na_2CO_3 溶液中

OH⁻数目为 0.01N_A

- 4. 下列关于苯乙炔 () 的说法正确的是 ()
- A. 不能使酸性 $KMnO_4$ 溶液褪色 B. 分子中最多有 5 个原子共直线
- C. 能发生加成反应和取代反应 D. 可溶于水
- 5. 短周期元素 X、Y、Z、W、Q 原子序数依次增大。基态 X、Z、Q 原子均有两个单电子, W 简单离子在同周期离子中半径最小, Q 与 Z 同主族。下列说法错误的是 ()
- A. X 能与多种元素形成共价键 B. 简单氢化物沸点: Z < Q


- 6. 镀锌铁钉放入棕色的碘水中,溶液褪色;取出铁钉后加入少量漂白粉,溶液恢复棕色; 加入CCl₄,振荡,静置,液体分层。下列说法正确的是()
- A. 褪色原因为 I_2 被 Fe 还原 B. 液体分层后, 上层呈紫红色
- C. 镀锌铁钉比镀锡铁钉更易生锈 D. 溶液恢复棕色的原因为 I 被氧化
- 7. 下列类比或推理合理的是()

	已知	方法	结论
A	沸点: $\operatorname{Cl}_2 < \operatorname{Br}_2 < \operatorname{I}_2$	类比	沸点: $H_2 < N_2 < O_2$

В	酸性: HClO ₄ > HIO ₄	类比	酸性: HCl > HI
С	金属性: Fe > Cu	推理	氧化性: Fe ³⁺ < Cu ²⁺
D	$K_{sp}: Ag_2CrO_4 < AgCl$	推理	溶解度: $Ag_2CrO_4 < AgCl$

8. 理论化学模拟得到一种 N_{13}^{+} 离子,结构如图。下列关于该离子的说法错误的是()

- A. 所有原子均满足 8 电子结构 B. N 原子的杂化方式有 2 种
- C. 空间结构为四面体形
- D. 常温下不稳定
- 9. 如图, c 管为上端封口的量气管, 为测定乙酸溶液浓度, 量取10.00mL 待测样品加入 b 容器中,接通电源,进行实验。下列说法正确的是()
- 注: 本题 (第9题) 暂缺电解装置图。
- A. 左侧电极反应: 2H₂O − 4e⁻ == O₂ ↑ +4H⁺
- B. 实验结束时, b 中溶液红色恰好褪去
- C. 若 c 中收集气体11.20mL,则样品中乙酸浓度为0.1mol· L^{-1}
- D. 把盐桥换为 U 形铜导线,不影响测定结果
- 注: 第10题暂缺, 考查有机反应机理分析
- 11 . $H_2O(l)$ 、 $NH_3(l)$ 均 可 自 耦 电 离 : $2H_2O(l)$ 〇 $H^- + H_3O^+$ 、

$$2NH_3(1)$$
 \longrightarrow $NH_2^- + NH_4^+$ 。下列反应与**CH,CH,** $+$ **Br+H** $+$ **OH** \longrightarrow **CH,CH,OH** $+$ **HBr** 原理不同的是()

Α

$$Mg_3N_2 + 6H_2O = 3Mg(OH)_2 + 2NH_3$$

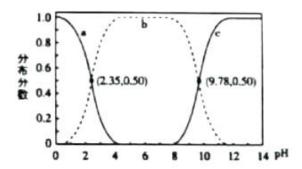
- B. $SiCl_4 + 8NH_3(1) = Si(NH_2)_4 + 4NH_4C1$
- C. $3Cl_2 + 8NH_3 = 6NH_4Cl + N_2$
- D. $PCl_3 + 3H_2O = H_3PO_3 + 3HCl$
- 12. 某温度下, 在 lL 恒容密闭容器中 2.0mol X 发生反应 2X(s) ₹ Y(g) + 2Z(g), 有 关数据如下:

时间段/min	产物 Z 的平均生成速率/mol·L ⁻¹ ·min ⁻¹
0 ~ 2	0.20
0 ~ 4	0.15
0 ~ 6	0.10

下列说法错误的是()

- A. $1 \min$ 时,Z 的浓度大于 $0.20 \text{mol} \cdot \text{L}^{-1}$ B. $2 \min$ 时,加入 0.20 mol Z,此时 $v_{\mathbb{F}}(Z) < v_{\mathbb{F}}(Z)$
- C. 3 min 时, Y 的体积分数约为 33.3%
- D. 5 min 时, X 的物质的量为1.4 mol
- 13. 下列实验能达到目的的是()

	实验目的	实验方法或操作		
Α	测定中和反应的反应热	酸碱中和滴定的同时, 用温度传感器采集锥形瓶内溶液的温度		
B \$100 at the control of the contr		量取同体积不同浓度的 $NaClO$ 溶液,分别加入等体积等浓度的 Na_2SO_3 溶液,对比现象		
С	判断反应后 Ba ²⁺ 是否 沉淀完全	将 Na ₂ CO ₃ 溶液与 BaCl ₂ 溶液混合,反应后静置,向上层清液中再加 1 滴 Na ₂ CO ₃ 溶液		
D 检验淀粉是否发生了水 向淀粉水		向淀粉水解液中加入碘水		


- A. A B. B C. C D. D
- 14. 某储能电池原理如图。下列说法正确的是()
- 注: 本题 (第14题) 暂缺电池原理图。
- A. 放电时负极反应: Na₃Ti₂(PO₄)₃ 2e⁻ = NaTi₂(PO₄)₃ + 2Na⁺
- B. 放电时 Cl^- 透过多孔活性炭电极向 CCl_4 中迁移
- C. 放电时每转移1mol 电子, 理论上CCl₄吸收0.5mol Cl,
- D. 充电过程中, NaCl 溶液浓度增大
- 15. 甘氨酸(NH,CH,COOH)是人体必需氨基酸之一。在25℃时,NH,CH,COOH、

NH₃CH₂COO

和 NH,CH,COO-

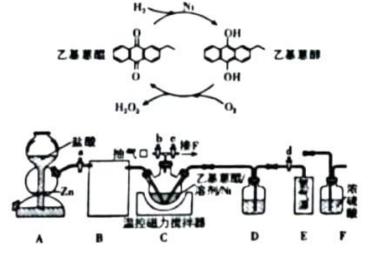
的 分

$$\delta\left(A^{2^{-}}\right) = \frac{c\left(A^{2^{-}}\right)}{c\left(H_{2}A\right) + c\left(HA^{-}\right) + c\left(A^{2^{-}}\right)}$$
】与溶液 pH 关系如图。下列说法错误的是()

- A. 甘氨酸具有两性
- B. 曲线 c 代表 NH₂CH₂COO⁻
- C. NH₃CH₂COO⁻ + H₂O = NH₃CH₂COOH + OH⁻ 的平衡常数 K = 10^{-11.65}
- D. $c^2 (NH_3^+CH_2COO^-) < c (NH_3^+CH_2COOH) \cdot c (NH_2CH_2COO^-)$
- 二、非选择题: 本题共4小题, 共55分。

16. (14 分)某工厂采用辉铋矿(主要成分为 ${\rm Bi}_2{\rm S}_3$,含有 ${\rm FeS}_2$ 、 ${\rm SiO}_2$ 杂质)与软锰矿(主要成分为 ${\rm MnO}_2$)联合焙烧法制备 ${\rm BiOCl}$ 和 ${\rm MnSO}_4$,工艺流程如下:

已知: ①焙烧时过量的 MnO,分解为 Mn,O,, FeS,转变为 Fe,O,;


②金属活动性: Fe > (H) > Bi > Cu;

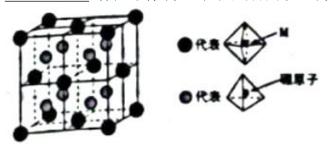
③相关金属离子形成氢氧化物的pH 范围如下:

	开始沉淀 pH	完全沉淀 pH
Fe ²⁺	6.5	8.3
Fe ³⁺	1.6	2.8
Mn ²⁺	8.1	10.1

回答下列问题:

- (1) 为提高焙烧效率,可采取的措施为
- a. 进一步粉碎矿石
- b. 鼓入适当过量的空气
- c. 降低焙烧温度
 - (2) Bi_2S_3 在空气中单独焙烧生成 Bi_2O_3 , 反应的化学方程式为______。
 - (3) "酸浸"中过量浓盐酸的作用为: ①充分浸出 Bi^{3+} 和 Mn^{2+} ; ②
- (4) 滤渣的主要成分为_____(填化学式)。
- (6) 加入金属 Bi 的目的是 。
- 17. (14分) H₂O₂作为绿色氧化剂应用广泛, 氢醌法制备H₂O₂原理及装置如下:

已知: H_2O 、HX 等杂质易使 Ni 催化剂中毒。回答下列问题:


(1)	A 中反应的离子方程式为。
	装置 B 应为 (填序号) 。
9	5 *** U ** **
0	2 3
塞 b,	检查装置气密性并加入药品,所有活塞处于关闭状态。开始制备时,打开活塞
	装置 F 的作用为。
	反应过程中,控温45℃的原因为。
	氢醌法制备 H_2O_2 总反应的化学方程式为。
(7)	取 2.50 g 产品,加蒸馏水定容至 _, 摇匀。取 20.00 mL 于锥形瓶中,用 0.0500 mol · L $^{-1}$
酸性.	$KMnO_4$ 标准溶液滴定。平行滴定三次,消耗标准溶液体积分别为 $19.98mL$ 、 $20.90mL$
20.02	2 m L 。假设其他杂质不干扰结果,产品中 $\mathrm{H}_2\mathrm{O}_2$ 质量分数为。
	(13 分) 工业合成氨是人类科学技术的一项重大突破,目前已有三位科学家因其获得 贝 尔 奖 , 其 反 应 为 :
N ₂ (§	g) + $3H_2(g)$ $\Longrightarrow 2NH_3(g)$ $\Delta H = -92.4kJ \cdot mol^{-1}$ $\Delta S = -200J \cdot K^{-1} \cdot mol^{-1}$
回答	下列问题:
	合成氨反应在常温下(填"能"或"不能")自发。
	于提高平衡转化率,综合考虑催化剂 (铁触媒) 活性等因素,工业常采用 400 – 500℃。 反应速率与平衡产率的矛盾,我国科学家提出了两种解决方案。
	方案二: M-LiH复合催化剂。
	0000
:	10 000
i	100
E St & Walnut	10 + #LiH
-	300°C Mn-LiH
W.	0.1
20	V Cr Mn Fe Co Ni 簡化剂 50 100 150 200 250 300 350 400 温度/C
	00℃时,复合催化剂比单一催化剂效率更高 温同压下,复合催化剂有利于提高氨的平衡产率
	度越高,复合催化剂活性一定越高
	某合成氨速率方程为: $\mathbf{v} = \mathbf{k} \mathbf{c}^{\alpha} (\mathbf{N}_{2}) \mathbf{c}^{\beta} (\mathbf{H}_{2}) \cdot \mathbf{c}^{\gamma} (\mathbf{N} \mathbf{H}_{3})$, 根据表中数据,
. ,	(2) (2) (3),

实验	$\frac{c(N_2)}{\text{mol} \cdot L^{-1}}$	$\frac{c(H_2)}{\text{mol} \cdot L^{-1}}$	$\frac{c\left(NH_{3}\right)}{mol \cdot L^{-1}}$	$\frac{v}{\text{mol} \cdot L^{-1} \cdot s^{-1}}$
1	m	n	p	q
2	2m	n	p	2q
3	m	n	0.1p	10q
4	m	2n	р	2.828q

在合成氨过程中, 需要不断分离出氨的原因为

- a. 有利于平衡正向移动 b. 防止催化剂中毒 c. 提高正反应速率
- (6) 某种新型储氢材料的晶胞如图,八面体中心为 M 金属离子,顶点均为 NH,配体;四 面体中心为硼原子, 顶点均为氢原子。若其摩尔质量为188g·mol⁻¹, 则 M 元素为 _ (填元素符号) ;在该化合物中,M 离子的价电子排布式为______。

(14分) 某药物成分 H 具有抗炎、抗病毒、抗氧化等生物活性, 其合成路线如下:

回答下列问题:

(1) A 的分子式为_

(2) 在 NaOH 溶液中, 苯酚与 CH3OCH2Cl 反应的化学方程式为

(4)	$F \rightarrow G$ 中步骤 ii 实现了由	到	的转化(填官能团名称)。
(5)	I 的结构简式为。		
(6)	化合物I的同分异构体满足以下	条件的有	种(不考虑立体异构);
i .	含苯环且苯环上只有一个取代基		
ii .	红外光谱无醚键吸收峰		
其中	, 苯环侧链上有3种不同化学	环境的氢原子,	且个数比为 6:2:1 的结构简式为
	(任写一种)。		